Principal eigenvalues for generalised indefinite Robin problems

نویسنده

  • Daniel Daners
چکیده

We consider the principal eigenvalue of generalised Robin boundary value problems on non-smooth domains, where the zero order coefficient of the boundary operator is negative or changes sign. We provide conditions so that the related eigenvalue problem has a principal eigenvalue. We work with the framework involving measure data on the boundary due to [Arendt & Warma, Potential Anal. 19, 2003, 341–363]. Examples of simple domains with cusps are used to illustrate all possible phenomena.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundedness and Monotonicity of Principal Eigenvalues for Boundary Value Problems with Indefinite Weight Functions

We study the principal eigenvalues (i.e., eigenvalues corresponding to positive eigenfunctions) for the boundary value problem: −∆u(x) = λg(x)u(x), x ∈ D; (∂u/∂n)(x) + αu(x) = 0, x ∈ ∂D, where ∆ is the standard Laplace operator, D is a bounded domain with smooth boundary, g : D → R is a smooth function which changes sign on D and α∈R. We discuss the relation between α and the principal eigenval...

متن کامل

Principal Eigenvalues for Problems with Indefinite Weight Function on R

We investigate the existence of positive principal eigenvalues of the problem —Au(x) = lg(x)u for x e R" ; u(x) —* 0 as x —> oo where the weight function g changes sign on R" . It is proved that such eigenvalues exist if g is negative and bounded away from 0 at oo or if n > 3 and \g(x)\ is sufficiently small at oo but do not exist if n = 1 or 2 and fRn g(x)dx > 0 .

متن کامل

Infinite product representation of solution of indefinite SturmLiouville problem

In this paper, we investigate infinite product representation of the solution of a Sturm- Liouville equation with an indefinite weight function which has two zeros and/or singularities in a finite interval. First, by using of the asymptotic estimates provided in [W. Eberhard, G. Freiling, K. Wilcken-Stoeber, Indefinite eigenvalue problems with several singular points and turning points, Math. N...

متن کامل

On the Continuity of Principal Eigenvalues for Boundary Value Problems with Indefinite Weight Function with Respect to Radius of Balls in Rn

where D is a bounded domain with smooth boundary, g changes sign on D, and f is some function of class C1 such that f(0)= 0= f(1). Fleming’s results suggested that nontrivial steady-state solutions were bifurcating the trivial solutions u ≡ 0 and u ≡ 1. In order to investigate these bifurcation phenomena, it was necessary to understand the eigenvalues and eigenfunctions of the corresponding lin...

متن کامل

Spectral theory for nonlocal dispersal operators with time periodic indefinite weight functions and applications

In this paper, we study the spectral theory for nonlocal dispersal operators with time periodic indefinite weight functions subject to Dirichlet type, Neumann type and spatial periodic type boundary conditions. We first obtain necessary and sufficient conditions for the existence of a unique positive principal spectrum point for such operators. We then investigate upper bounds of principal spec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012